Exe Estuary

Exe Estuary

Exe Estuary

Case Study A

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Shellfishery management and extreme weather, changing habitat area and availability, food availability, plus an increase in energy requirements

Recommendations from modelling

Current shellfishing intensity does not reduce Oystercatcher survival, but reduced fishable size or increased daily quota could.

More information

Stillman, R.A., Goss-Custard, J.D., West, A.D., Durell, S.E.A.L.V.D., Caldow, R.W.G., McGrorty, S. and Clarke, R.T., 2000. Predicting mortality in novel environments: tests and sensitivity of a behaviour-based model. Journal of Applied Ecology, 37(4): 564-588.

Stillman, R.A., Goss-Custard, J.D., West, A.D., Durell, S.E.A.L.V.D., McGrorty, S., Caldow, R.W.G., Norris, K.J., Johnstone, I.G., Ens, B.J., Van Der Meer, J. and Triplet, P., 2001. Predicting shorebird mortality and population size under different regimes of shellfishery management. Journal of Applied Ecology, 38(4): 857-868.

Funding

Commission of the European Communities, Directorate-General for Fisheries and the Natural Environment Research Council

Case Study B

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Shellfishery management changing habitat area

Recommendations from modelling

Shellfishery management needs to reserve up to 8 times more shellfish biomass than consumed by Oystercatcher populations.

More information

Goss-Custard, J.D., Stillman, R.A., West, A.D., Caldow, R.W.G., Triplet, P., le V dit Durell, S.E.A. and McGrorty, S., 2004. When enough is not enough: shorebirds and shellfishing. Proceedings. Biological sciences, 271(1536): 233-237.

Funding

Centre for Ecology and Hydrology

Case Study C

Bird species included in model

Dark-bellied brent goose (Branta bernicla bernicla)

Environmental issues simulated

Human recreation and extreme weather changing habitat area, habitat availability, food availability and energy requirements

Recommendations from modelling

Loss of terrestrial habitat has greater impact on brent goose than loss of intertidal habitat.

More information

Stillman, R.A., West, A.D., le V dit Durell, S.E.A., Caldow, W.R.G., McGrorty, S., Yates, M.G., Garbutt, R.A., Yates, T.J., Rispin, W.E. and Frost, N.J., 2005. Estuary Special Protection Areas – Establishing baseline targets for shorebirds, Centre for Ecology and Hydrology, Dorchester, Dorset.

Funding

English Nature

Case Study D

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola)

Environmental issues simulated

Human recreation, sea-level rise and extreme weather, affecting habitat area and availability, food availability and energy requirements

Recommendations from modelling

Terrestrial habitat loss, sea-level rise and reduced temperature can reduce shorebird survival, but effects vary between species.

More information

Stillman, R.A., West, A.D., dit Durell, S.E.A.V, Caldow, W.R.G., McGrorty, S., Yates, M.G., Garbutt, R.A., Yates, T.J., Rispin, W.E. and Frost, N.J., 2005. Estuary Special Protection Areas – Establishing baseline targets for shorebirds, Centre for Ecology and Hydrology, Dorchester, Dorset. Stillman, R.A., Caldow, R.W.G., le V. dit Durell, S.E.A., West, A.D., McGrorty, S., Goss-Custard, J.D., Pérez-Hurtado, A., Castro, M., Estrella, S., Masero, J.A., Rodríguez-Pascual, F.H., Triplet, P., Loquet, N., Desprez, M., Fritz, H., Clausen, P., Ebbinge, B., Norris, K. and Mattison, E., 2005. Coastal bird diversity. Maintaining migratory coastal bird diversity: management through individual-based predictive population modelling. Centre for Ecology and Hydrology, Winfrith Newburgh, Dorset.

Durell, S.E.A.L.V.d., Stillman, R.A., McGrorty, S., West, A.D. and Price, D.J., 2007. Predicting the effect of local and global environmental change on shorebirds: a case study on the Exe estuary, U.K. Wader Study Group Bulletin, 112: 24-36.

Funding

European Commission, English Nature

Case Study E

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Shellfishery management changing habitat area and availability, plus food quality

Recommendations from modelling

Current mussel biomass sufficient to support Oystercatcher population. Increased mussel lay area and extra food from mussel discards would further benefit Oystercatcher.

More information

Stillman, R.A., Goss-Custard, J.D. and Wood, K.A., 2014. Predicting the mussel food requirements of oystercatchers in the Exe Estuary, Bournemouth University / Natural England, Bournemouth / Exeter.

Funding

Natural England. IPENS programme (LIFE11NAT/UK/000384IPENS) which is financially supported by LIFE, a financial instrument of the European Community.

Case Study F

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Turnstone (Arenaria interpres)

Environmental issues simulated

Unspecified driver and sea-level rise changing habitat area and habitat availability time

Recommendations from modelling

Habitat loss and sea-level rise can reduce shorebird survival, but effects vary between species.

More information

Bowgen, K.M., 2016. Predicting the effect of environmental change on wading birds: insights from individual-based models. PhD thesis, Bournemouth University in collaboration with HR Wallingford.

Funding

Bournemouth University and HR Wallingford

Case Study G

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Shellfishery management changing food density / quality

Recommendations from modelling

Shellfishing impacts on oystercatcher can be reduced by harvesting during winter based on recalculations of the requirements of the birds.

More information

Goss-Custard, J.D., Bowgen, K.M. and Stillman, R.A., 2019. Increasing the harvest for mussels Mytilus edulis without harming oystercatchers Haematopus ostralegus. Marine Ecology Progress Series, 612: 101-110.

Funding

Bournemouth University

Case Study H

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Causes of Oystercatcher population decline

Recommendations from modelling

Increased prey stealing from Oystercatchers by Carrion Crows (Corvus corone) and Herring Gulls (Larus argentatus) could have reduced the foraging success of Oystercatchers sufficiently to have reduced overwinter survival and deterred prospecting immatures from choosing the estuary as their wintering site.

More information

Goss-Custard, J. D., Austin, G. E., Frost, T. M., Sitters, H. P. & Stillman, R. A. (2024) Decline in the numbers of Eurasian Oystercatchers Haematopus ostralegus on the Exe estuary Special Protection Area. Ardea, 112, 267-283.

Funding

Bournemouth University

Humber Estuary

Humber Estuary

Humber Estuary

Case Study A

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Red knot (Calidris canutus), Ringed plover (Charadrius hiaticula)

Environmental issues simulated

Port development and sea-level rise changing habitat area and habitat availability time

Recommendations from modelling

Sea-level rise and port development can reduce shorebird survival if feeding conditions poor.

More information

Stillman, R. A., West, A. D., Goss-Custard, J. D., McGrorty, S., Frost, N. J., Morrisey, D. J., Kenny, A. J. & Drewitt, A. L. (2005) Predicting site quality for shorebird communities: a case study on the Humber estuary, UK. Marine Ecology Progress Series, 305, 203-217.

Funding

ABP Marine Environmental Research and English Nature

Case Study B

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Red knot (Calidris canutus), Sanderling (Calidris alba), Turnstone (Arenaria interpres)

Environmental issues simulated

Unspecified driver and sea-level rise changing habitat area and habitat availability time

Recommendations from modelling

Habitat loss and sea-level rise can reduce shorebird survival, but effects vary between species.

More information

Bowgen, K.M., 2016. Predicting the effect of environmental change on wading birds: insights from individual-based models. PhD thesis, Bournemouth University in collaboration with HR Wallingford.

Funding

Bournemouth University and HR Wallingford

Case Study C

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Red knot (Calidris canutus), Ringed plover (Charadrius hiaticula), Turnstone (Arenaria interpres), Sanderling (Calidris alba)

Environmental issues simulated

Intertidal habitat creation

Recommendations from modelling

Increasing the area of intertidal habitat by the creation of a coastline managed realignment site can increase the number of birds supported.

More information

Mander, L. (2023) Understanding space and habitat use of the near threatened Eurasian curlew to inform the value of habitat restoration schemes for the species’ conservation. PhD Thesis, University of Hull.

Funding

University of Hull

Poole Harbour

Poole Harbour

Poole Harbour

Case Study A

Bird species included in model

Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Unspecified drivers affecting loss of terrestrial habitats and food supply, plus sea-level rise and extreme weather, changing habitat area and availability time, food quality and energy requirements

Recommendations from modelling

Terrestrial habitat loss and sea-level rise can reduce shorebird survival, but effects vary between species.

More information

Stillman, R.A., West, A.D., dit Durell, S.E.A.V., Caldow, W.R.G., McGrorty, S., Yates, M.G., Garbutt, R.A., Yates, T.J., Rispin, W.E. and Frost, N.J., 2005. Estuary Special Protection Areas – Establishing baseline targets for shorebirds, Centre for Ecology and Hydrology, Dorchester, Dorset.

Durell, S.E.A.L.V.d., Stillman, R.A., Caldow, R.W.G., McGrorty, S., West, A.D. and Humphreys, J., 2006. Modelling the effect of environmental change on shorebirds: A case study on Poole Harbour, UK. Biological Conservation, 131(3): 459-473. 

Funding

English Nature

Case Study B

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Invasive species changing food density / quality

Recommendations from modelling

Presence of non-native shellfish, by providing additional food, can increase Oystercatcher survival.

More information

Caldow, R.W.G., Stillman, R.A., dit Durell, S., West, A.D., McGrorty, S., Goss-Custard, J.D., Wood, P.J. and Humphreys, J., 2007. Benefits to shorebirds from invasion of a non-native shellfish. Proceedings of the Royal Society B-Biological Sciences, 274(1616): 1449-1455.

Funding

English Nature

Case Study C

Bird species included in model

Avocet (Recurvirostra avosetta)

Environmental issues simulated

Sea-level rise and shoreline change, plus sensitivity tests changing habitat area and availability time and food quality

Recommendations from modelling

Sea-level rise can reduce avocet survival, but mitigation by creation of non-tidal lagoon can offset this.

More information

Ross, K.E., 2013. Investigating the physical and ecological drivers of change in a coastal ecosystem: From individual-to population-scale impacts. PhD thesis, Bournemouth University.

Funding

Bournemouth University and HR Wallingford

Case Study D

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola)

Environmental issues simulated

Unspecified driver, sea-level rise and regime shifts changing habitat area, habitat availability time and food quality

Recommendations from modelling

Habitat loss, sea-level rise and changes in invertebrate communities (especially loss of larger prey) can reduce shorebird survival, but effects vary between species.

More information

Bowgen, K.M., Stillman, R.A. and Herbert, R.J.H., 2015. Predicting the effect of invertebrate regime shifts on wading birds: Insights from Poole Harbour, UK. Biological Conservation, 186: 60-68.

Bowgen, K.M., 2016. Predicting the effect of environmental change on wading birds: insights from individual-based models. PhD thesis, Bournemouth University in collaboration with HR Wallingford.

Funding

Bournemouth University and HR Wallingford

Case Study E

Bird species included in model

Eurasian oystercatcher (Haematopus ostralegus)

Environmental issues simulated

Shellfishery management changing food density / quality

Recommendations from modelling

Increased shellfishing intensity does not reduce Oystercatcher survival rate.

More information

Clarke, L.J., 2018. Ecosystem impacts of intertidal invertebrate harvesting: from benthic habitats to bird predators. PhD thesis, Bournemouth University.

Funding

Bournemouth University, Natural England and Southern Inshore Fisheries and Conservation Authority (SIFCA)

Case Study F

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola)

Environmental issues simulated

Human activity, sea-level rise and prey availability, changing habitat area and availability time and food quality

Recommendations from modelling

Increased disturbance from human activities only reduces shorebird survival if associated with decline in site quality.

More information

Collop, C., 2016. Impact of human disturbance on coastal birds: Population consequences derived from behavioural responses. PhD thesis, Bournemouth University.

Funding

British Association for Shooting and Conservation and Bournemouth University

Severn Estuary

Severn Estuary

Severn Estuary

Case Study A

Bird species included in model

Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Common snipe (Gallinago gallinago), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Golden plover (Pluvialis apricaria), Grey plover (Pluvialis squatarola), Lapwing (Vanellus vanellus), Red knot (Calidris canutus), Ringed plover (Charadrius hiaticula), Turnstone (Arenaria interpres)

Environmental issues simulated

Tidal power barrage development changing habitat area, availability time and food quality

Recommendations from modelling

Tidal barrages which reduce availability of higher quality feeding habitat have greatest impact on number of shorebirds that can be supported.

More information

Bournemouth University, 2010. Severn tidal power – Sea topic paper. Waterbirds. Annex 3 – Waterbird Individual based modelling., Poole, Dorset, Bournemouth University.

Funding

Parsons Brinckerhoff Ltd, Black and Veatch Limited, Department for Energy and Climate Change

Case Study B

Bird species included in model

Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Red knot (Calidris canutus), Ringed plover (Charadrius hiaticula), Turnstone (Arenaria interpres)

Environmental issues simulated

Unspecified driver and sea-level rise changing habitat area and habitat availability time

Recommendations from modelling

Habitat loss and sea-level rise can reduce shorebird survival, but effects vary between species.

More information

Bowgen, K.M., 2016. Predicting the effect of environmental change on wading birds: insights from individual-based models. PhD thesis, Bournemouth University in collaboration with HR Wallingford.

Funding

Bournemouth University and HR Wallingford

Southampton Water

Southampton Water

Southampton Water

Case Study A

Bird species included in model

Bar-tailed godwit (Limosa lapponica), Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Ringed plover (Charadrius hiaticula), Turnstone (Arenaria interpres)

Environmental issues simulated

Port development and unspecified driver of prey density. Mitigation due to changing habitat area and food availability

Recommendations from modelling

Port development can decrease shorebird survival, but mitigation by creation of a tidal creek can offset this.

More information

Wood, P.J. (2007). Human impacts on coastal bird populations in the Solent. PhD thesis, University of Southampton.

Funding

English Nature, ABP Marine Environmental Research, Beaulieu Estate

Case Study B

Bird species included in model

Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Ringed plover (Charadrius hiaticula)

Environmental issues simulated

Human activity from increased housing, affecting habitat area, availability time and energy need

Recommendations from modelling

Increased disturbance from human activities, associated with increased housing, can potentially decrease shorebird survival.

More information

Stillman, R.A., West, A.D., Clarke, R.T. & Liley, D. (2012) Solent Disturbance and Mitigation Project Phase II: Predicting the impact of human disturbance on overwintering birds in the Solent. Report to the Solent Forum. pp 119.

Funding

Solent Forum

Case Study C

Bird species included in model

Black-tailed godwit (Limosa limosa), Common redshank (Tringa totanus), Dunlin (Calidris alpina), Eurasian curlew (Numenius arquata), Eurasian oystercatcher (Haematopus ostralegus), Grey plover (Pluvialis squatarola), Turnstone (Arenaria interpres)

Environmental issues simulated

Unspecified driver and sea-level rise changing habitat area and habitat availability time

Recommendations from modelling

Habitat loss and sea-level rise can reduce shorebird survival, but effects vary between species.

More information

Bowgen, K.M., 2016. Predicting the effect of environmental change on wading birds: insights from individual-based models. PhD thesis, Bournemouth University in collaboration with HR Wallingford.

Funding

Bournemouth University and HR Wallingford